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1. Introduction 

Robert Mare’s (1979, 1980, 1981) model of educational transitions represents one of the major 

methodological contributions to the literature on family background and educational success. 

Instead of years of completed schooling and a linear regression model, Mare suggested to treat 

educational attainment as a sequence of discrete transitions from lower to higher educational levels 

and to use a sequential logit model. The principal advantages of Mare’s educational transition 

model are that, first, the model is invariant to changes over time in the overall distribution of 

education, second, the model conforms better to the way most sociologists think about educational 

attainment (as a sequence of transitions) and, third, it allows researchers to model the effect of 

family background variables on the probability of making successive educational transitions. 

The Mare model is, and for long time has been, highly influential in applied research 

(e.g., Garnier & Raffalovich 1984; Cobalti 1990; Heath & Clifford 1990; Shavit & Blossfeld 1993; 

Hansen 1997; Shavit & Westerbeek 1998; Vaid 2004; articles in Research in Social Stratification 

and Mobility vol. 28, issue 1, 2010). One of the consistent findings from applied research using the 

Mare model is that the effect of family background variables tends to decrease or “wane” across 

educational transitions. Substantive theories such as the theories of Maximally Maintained 

Inequality (Raftery & Hout 1993) and Effectively Maintained Inequality (Lucas 2001) have been 

proposed to explain this “waning coefficients” phenomenon.  

However, in two influential papers Cameron and Heckman (1998, 2001) argue that the 

waning coefficients in the Mare model may be artifacts of, first, an arbitrary choice of functional 

form in the logit model and, second, selection on unobserved variables. Selection on unobserved 

variables means that the group of individuals “at risk” of making educational transitions becomes 

increasingly selective at higher transitions due to characteristics that are not observed in the data. 

These unobserved characteristics might relate to academic ability, motivation, or cultural resources. 
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For example, compared to the group that completes elementary school and faces the decision about 

whether or not to enter high school (the first transition), the group that eventually completes high 

school and now has to decide about whether or not to enter university (the second transition) has not 

only better academic ability but is probably also more academically motivated. It is unrealistic to 

assume that we are able to observe (and control for) all the relevant characteristics that make the 

group that faces the second transition different from the group that faces the first transition and, 

consequently, the problem of selection on unobserved variables is endemic in all analyses using the 

Mare model. It can be shown that selection on unobserved variables leads to bias in the estimates of 

the effect of explanatory variables on the probability of making the second and higher educational 

transitions. This type of bias may be the cause of the waning coefficient phenomenon reported in 

previous research. Mare himself (1979, 1980, 1981, 1993) noted that selection on unobserved 

variables might lead to bias in the Mare model.  

In addition to selection on unobserved variables, the Mare model may also yield 

biased results because the error variances in the model’s equations for each educational transition 

are different. Differences in error variances across model equations are potentially important in the 

Mare model because the coefficients which express the effects of explanatory variables in each 

model equation are scaled relative to the error variance in that equation (i.e., the regression 

coefficients themselves are not known but the regression coefficients divided by the error variance 

in the equation are known). Consequently, differences in the effects of explanatory variables across 

transitions (for example, waning coefficients) might be driven by differences in error variances 

rather than reflecting real differences. This type of bias is called a scaling effect. 
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In this paper we propose a simple approach to dealing with selection on unobserved 

variables in the Mare model.
1
 Our approach is based on a bivariate probit selection model (BPSM) 

and it allows for unobserved variables which affect the probability of making lower educational 

transition to be correlated with unobserved variables which affect the probability of making higher 

educational transitions. Compared to the other approaches presented in this special issue, our 

approach is technically relatively simple, it is easy to understand, and it may be readily 

implemented using existing software (such as Stata, SAS, and R). The potential drawbacks of our 

approach are that, in order to be identified, the BPSM requires, first, parametric assumptions and, 

second, instrumental variables to provide exogenous variation in the probability of making each 

educational transition. Our approach is applicable is the “classic” Mare setup, i.e., in the case in 

which the analyst is interested in modeling a sequence of binary educational transitions. We 

illustrate bias in the Mare model and the applicability of our approach using simulated data and 

empirical data from the British National Child Development Study (NCDS). To simplify the 

presentation, we develop a BPSM model with only two educational transitions. However, our 

approach easily generalizes to a BPSM model with many transitions. 

Our paper has three key messages. First, there is no technical “magic bullet” for 

dealing with selection on unobserved variables in educational transition models. The BPSM 

represents a useful tool for addressing selection bias, but the analyst’s ability to address selection on 

unobserved variables is ultimately limited by the quality of the data. Our empirical example using 

                                                 

1
 Several studies deal with other aspects of the Mare model such as improvements in identification from repeated 

measurements of family background variables (Lucas 2001) and a more parsimonious formulation of the Mare model 

along the lines of Anderson’s (1984) Stereotype Ordered regression model (Hauser & Andrew 2006). With the 

exception of Breen and Jonsson (2000) we are not familiar with any study in sociology that addresses selection on 

unobserved variables in educational transition models. In the economics of education literature selection bias in 

educational transition models is more frequently dealt with (e.g., Chevalier & Lanot 2002; Lauer 2003; Arends-

Kuenning & Duryea 2006; Colding 2006). 
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NCDS data and exploiting different amounts of information in this data illustrate this point. Second, 

selection on unobserved variables always leads to biased estimates of the effect of explanatory 

variables when analysts use a selective sample. For example, an analyst may be interested in higher 

education only (a later educational transition) and disregard earlier transitions. Our simulation 

results illustrate that not explicitly modeling selection processes in previous transitions leads to 

biased results at higher educational transitions. Third, in empirical applications it is typically not 

possible to separate bias from selection on unobserved variables from bias from scaling effects 

(Mare 2006). In our theoretical analysis we do, however, show that the likely direction of either 

type of bias can be assessed under a set of reasonable assumptions. 

 

2. Selection in Educational Transition Models 

2.1 The Baseline Model 

Mare’s (1979, 1980, 1981) educational transition model consists of a sequence of binary logit 

models in which the dependent variables are dummy variables for making the j’th educational 

transition conditional on previously having made the j-1’th transition. Our model consists of only 

two transitions and, instead of the logit specification used by Mare, we use the probit specification.  

Define two latent stochastic variables *

1y  and *

2y  which capture the propensity to make 

the first and second transition in an educational system. As described previously, the first transition 

represents the transition from elementary school to high school (or, equivalent, to upper secondary 

education such as A levels in the UK), and the second transition represents the transition from high 

school to higher education (for example, college, university, or university-college education). These 

types of transitions exist in most Anglo-American and Western European educational systems. We 

assume that in order for individuals to make the second transition, they must first successfully make 

the first transition. We do not observe the latent variables *

1y  and *

2y  (the propensities to make the 



 5 

two transitions) but instead two binary variables y indicating if individuals actually make each of 

the two transitions. These binary variables are defined as 1jy   if 
* 0jy   and 0 otherwise, j = 1,2, 

with j indexing transitions. 

The likelihood that an individual makes each educational transition depends on a set 

of observed explanatory variables (for example, parents’ education and income, academic ability, 

and motivation) and some unobserved variables. The sequence of educational transitions can be 

represented by the following system of linear regression equations 

 

*

1 1 1 1

*

2 2 2 2

y x e

y x e





 

 
(1), 

 

where xj, j = 1,2 represents observed variables for each transition and ej, j = 1,2 represent error 

terms that capture the effect of unobserved variables. Because the observed transitions are binary 

variables, we cannot identify the variance of the error terms e and, as is always the case in the probit 

model, they are both normalized to 1. In order to obtain the bivariate probit selection model 

(BPSM), we assume that the error terms follow a bivariate normal distribution 

 

1

2

( , )
e

N
e

 
 
 
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1
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

 
  
 

Σ . 
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In the BPSM model the parameter   captures the correlation between the unobserved variables in 

each educational transition. In other words, the parameter   is a summary measure of the 

importance of selection on unobserved variables. Our reason for choosing the probit specification 

over the logit specification is that the probit specification allows us to estimate   and thus to take 

into account that unobserved variables that affect the propensity to make the first transition are 

likely to be correlated with the unobserved variables that affect the propensity to make the second 

transition. There is no bivariate logistic distribution and, consequently, it is not possible to estimate 

  with the logit specification used in the traditional Mare model. 

 

2.2 Bias from Selection on Unobserved Variables 

The fundamental problem in analyzing educational transitions is that the probability of making the 

second transition depends on whether or not individuals have previously made the first transition; 

i.e., the group at risk at the second transition always represents a selected sample. In this section we 

explain how sample selection might lead to bias in educational transition models. First, using 

simulated data we give an intuitive explanation of how selection leads to bias is the estimated 

effects of explanatory variables on the probability of making the second transition. Second, we 

provide a formal statistical account of selection bias. 

 We use simulated data to show how selection effects operate and illustrate their 

consequences. The advantage of simulated data is that we control the data generating process and 

know all the true relationships in the data. The selection problem arises because the group of 

students eligible for making the second transition differs from the group that is eligible for making 

the first transition both in terms of observed and unobserved characteristics. The Mare model does 

not take selection on unobserved variables into account and, consequently, it yields biased estimates 

of the effect of observed explanatory variables on the probability of making the second (and higher) 
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transition(s). But how strong is this bias? We estimate two types of models on the simulated data: a 

traditional Mare model but, for comparability, using the probit rather than the logit specification 

(we label this model the Mare probit model) and our BPSM.  

We generate the simulated data on the basis of the following model with two 

educational transitions 

 

 

* *

1 1 2 1 1 1 1

* * *

2 1 3 2 2 2 1 2

        ; 1 iff 0

        ; 1 iff , 0

y x x v y y

y x x v y y y





     

     

 (2) 

 

In this model y1 = 1 represents making the first transition (for example, completing high school) 

and y2 = 1 represents making the second transition (for example, completing college), and 1 3x x  

represent explanatory variables. Furthermore, the terms 1v  and 
2v  summarize unobserved variables 

which are correlated across transitions and 
1  and 

2  summarize the random error variance. We 

generate the data such that 
iid

1 2, (0,1)x x N , 3 2 ; (0,1)x x N   , 
iid

1 2, (0,1)N  and 

 1 2, ,N  0 Σ , (0,0)'0  and 
1

1





 
  
 

Σ . Note that  represents the correlation between 

1 and 2 , that is the correlation between the unobserved variables, 1 2( , )cor   , while 

1 2 1 1 2 2( , ) (   ,   )
2

corr e e corr v v


        in Equation (1) represents the total correlation 

between both the unobserved variables and the random error variance. The difference between 

Equation (1) and Equation (2) is that in Equation (1) we do not distinguish between the effect of 

unobserved variables systematic that are correlated across transitions ( v ) and unobserved variables 

that are not correlated across transitions ( ). In Equation (2) x1 is an observed family background 
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variable of substantive interest, for example father’s education. The variables x2 and x3 are observed 

explanatory variables that vary over transitions and which act as instrumental variables which help 

to identify the BPSM (for example, x2 and x3 may be grades or test scores from exams taken before 

the first and second transition). As we discuss in more detail below, these instrumental variables are 

required in order for the BPSM not to be identified solely from the parametric assumption of 

bivariate normality. 

In each simulation of the model in Equation (2) we use a sample of 1000 observations 

and 200 replications. We use different values for   to emulate different levels of selection on 

unobserved variables. For each simulation and fixed value of  , we estimate the Mare probit model 

and the BPSM for the probability of making the second transition, y2 = 1. The parameter of interest 

is the coefficient on the observed explanatory variable
1x . We set up the simulations so that the true 

value of this coefficient is 1. We then calculate the absolute bias (compared to the true coefficient of 

1) of the estimates of the effect of 
1x  for different values of   in the Mare probit model and the 

BPSM.
2
 Figure 1 shows the magnitude of the absolute bias in both models and for values of   

ranging from 0 and to 0.95. 

 

-- FIGURE 1 ABOUT HERE -- 

 

                                                 

2
 We need to rescale the estimates of the effect of 

1x  when calculating the magnitude of the bias. The rescaling of the 

effect of 1x  in the Mare probit model and the BPSM is given by 
2

ˆ

(1 )

b


, where b̂  is the estimated coefficient on 1x . 

The rescaling is necessary because the true model has error variance 
1 1 2 2var( ) var( ) 1 1 2          but the 

models which use the selective sample that has made the first educational transition has error variance 21  . 
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Figure 1 shows that, first, in the Mare probit model bias in the coefficient of x1 increases more or 

less monotonically with the correlation between the unobserved variables in each transition (e1 and 

e2) and, second, in the BPSM the estimated coefficient of x1 is largely unaffected by the size of the 

correlation between the unobserved variables. These simulations illustrate that, although the 

substantive magnitude of the parameter bias does not relate to any real-world application (other 

simulations would have led to other estimates of this bias), the Mare probit model yields 

increasingly biased estimates of the effect of observed explanatory variables with increasing levels 

of selection on unobserved variables. 

 

-- TABLE 1 ABOUT HERE -- 

 

Our main result from the simulations is that the Mare probit model is highly susceptible to selection 

on unobserved variables. We further illustrate this point in Table 1 in which, again based on our 

simulated data, we report probit coefficients for x1 from three model specifications of y2 = 1. In the 

simulations the correlation between the unobserved variables (v1 and v2) is set to 0.99 ( ), which 

means that the correlation between all error terms (v1 and 1 and v2 and 2 u2 -  ) is 0.5. The first of 

the three specifications is a Mare probit model (which disregards selection on unobserved variables 

entirely). The true coefficient on x1 is 1, but the estimate from the Mare probit model is 0.840 and 

downwardly biased. The second specification is a Mare probit model which includes v2; i.e., a Mare 

model which controls for unobserved variables in the second transition. The reason why we can 

control for the unobserved variables in the Mare probit model is that we use simulated data in which 

we know all true relations in the data (this would not be the case with real data). The Mare probit 

model which includes 2v  estimates the effect of x1 at 1.019 and thus very close to the true value of 

1. Finally, the third specification is the BPSM which estimates the effect of x1 very accurately 
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(1.023). The main conclusion from this simulation example is that the traditional Mare model yields 

biased results of explanatory variables at the second (and higher) transition(s) because it fails to 

control for unobserved variables which are correlated across transitions and which lead to an 

increasingly selected sample. Consequently, analysts who analyze selective samples, for example 

students in secondary or higher education, and who do not explicitly model the selectivity of these 

samples arising from earlier educational transition, end up with biased estimates of explanatory 

variables. This is an important point and entails that analysts should model the entire educational 

career even if they are only interested in a later educational transition. 

 

2.3 Bias from Scaling Effects 

In addition to selection on unobserved variables, we might also experience bias in the estimated 

effects of explanatory variables at higher educational transitions because the error variance in the 

model equation for the first educational transition (which includes the whole sample) is different 

from the error variance in the model equation for the second transition (which includes a selected 

sample). It turns out that the variance of the error term in the selected sample is smaller than the 

variance in the whole sample (intuitively, this happens because students become more similar on 

unobserved as well as on observed characteristics at higher educational transitions, cf. Table 2). 

Unlike the linear regression model, in binary probability models such as the Mare model the 

variance of the error term is not identified and must be normalized (in the probit model the error 

variance is normalized to 1 and in the logit model the error variance is normalized to 2 / 3 ). The 

reason why we do not know the error variance is that the dependent variable is binary and we 

assume (rather than know) a functional form for the underlying probability distribution. 

Furthermore, in binary probability models the actual regression coefficients associated with 

explanatory variables are not identified. Rather, the regression coefficients divided by the error 
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variance in the probability (probit/logit) model are identified (intuitively, the regression coefficients 

must be expressed relative to some “unit” or scale for the dependent variable). However, since the 

error variance in the selected sample is lower than the error variance in the whole sample the 

regression coefficients in the second transition are upwardly biased when we analyze the selected 

sample because the denominator (in the case of the probit) is smaller than 1 (assuming that the 

variance in the selected sample is 0.8 and the true regression coefficient is 1, it is easy to illustrate 

the upward bias from scaling. For the first transition we get: 1/1 1    and for the second 

transition we get: 1/ 0.8 1.25   ). We describe bias from scaling formally in Appendix 1. 

 

2.4 Selection Effects and Scaling Effects in a Formal Model 

The previous sections have illustrated the intuition behind selection and scaling effects in the Mare 

model. We have also illustrated how the BPSM deals with the problem of selection on unobserved 

variables. In this section we recast the BPSM model in a formal context which addresses both 

selection and scaling effects. We also illustrate how selection and scaling effects most likely bias 

estimates of effects of explanatory variables. 

The problems of selection on unobserved variables and scaling effects exists at the 

second (and higher) educational transition(s). We decompose the probability of making the second 

educational transition into three components: (1) the true effects of the observed explanatory 

variables (the x’s), (2) the selection effect, and (3) the scaling effect. Our decomposition is based on 

an approximation developed by Nicoletti and Peracchi (2001) which has been shown to work well 

for   correlation coefficients up to 0.8 (see Appendix 2 for a derivation of the approximation). The 

approximation is a convenient way of representing attenuation bias (the combined effect of 

selection and scaling bias) and has the following form 
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  
 

    
2 2 1 1

2 1
22

1 1 1 1 1 1

1| 1

1

x x
P Y Y

x x x

  

     

 
 

    
  
 

. (3) 

 

Equation (3) shows the approximation of the probability of making the second educational 

transition conditional on having made the first transition. The true effects of the observed 

explanatory variables on the probability of making the second transition are represented by the 

term
2 2x . However, because of selection and scaling we do not estimate these true effects but 

instead biased effects. The selection term is 1 1( )x   and arises from selection in the first 

transition. The scaling term is     22

1 1 1 1 1 11 x x x       and captures the difference in the 

standard deviation (the square root of the variance) in the selected sample compared to in the whole 

sample. In empirical applications we estimate a combination of the true and the attenuation effect. 

That is, we estimate  2 1 2( 1| 1)P Y Y x     where 

 

 

    
2 2 1 1

2
22

1 1 1 1 1 11

x x
x

x x x

  


     




 

. (4) 

 

Since in most cases we do not have any information about the actual magnitude of the selection and 

the scaling effect, we cannot determine the severity of the parameter bias in the Mare model. This is 

the fundamental problem. However, by applying results from statistical theory and plausible 

assumptions about the relationships in the model, we may learn more about the likely direction of 

the selection and the scaling bias. 
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We begin by assessing selection bias. Following Wooldridge (2002), we note that the 

differential coefficient of the selection term wrt. x1 is 

 

      1 1
1 1 1 1 1 1 1

1

x
x x x

x
 

     


  


. (5) 

 

The differential coefficient measures the rate of change in the selection term when x1 changes, and 

it provides a convenient tool for evaluating what happens when we manipulate parameters in the 

model. However, in order to make inferences on the direction of the selection bias, we need to apply 

assumptions about the relationships in the data. We therefore invoke the four plausible assumptions 

 

1. 
1 2, 0   . Assume that x1 and x2 are family background variables which both have a 

positive effect on the probability of making both transitions (for example, father’s education 

and mother’s education). 

2. The explanatory variables x1 and x2 are positively correlated. This would make sense if they 

both measure some aspect of family background such as parents’ education. 

3. The variable x1 takes on a positive value larger than 0 (for example, father’s education). This 

assumption is included for expository reasons and may be relaxed. 

4. The correlation between the unobserved variables in the two transitions is positive, i.e., 

0  . This assumption makes intuitive sense and implies that if a person has a high (low) 

value in distribution of unobserved effect in the first transition he or she is also likely to 

have a high (low) value in the distribution of unobserved effects in the second transition. 
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Assumption 1 and 3 ensure that 
 1 1

1

0
x

x
 




, cf. Equation (5), as   0;s s   . In other words, 

the selection effect tends to be small when x1 is large and vice versa. Consequently, there is an 

inverse relationship between the selection term and x1. When also invoking assumptions 2 and 4, we 

find that      2 2 1 1 2 2 1 1

0 0

cov , cov , 0x x x x      
 

   because x2 and the selection term are 

negatively correlated. In other words, the selection effect drives down the estimate of 
2  and, 

consequently, if our assumptions are valid selection on unobserved variables most likely leads to a 

downward bias in the estimated effect of explanatory variables at the second transition. This result 

might help to explain the waning coefficients reported in empirical research using the Mare model. 

With regard to the scaling effect we note that 

      2* 2

2 1 1 1 1 1 1 1| 0 1Var Y Y x x x          (cf. Appendix 1). In other words, the variance in 

the selected sample at the second transition is always smaller than the variance in the whole sample 

at the first transition. Consequently, the scaling effect, the denominator in Equation (3), tends to 

inflate the estimate of the combined attenuation effect  compared to the true effect 2 . 

 In summary, two interrelated processes lead to attenuation bias in the estimated effects 

of explanatory variables at the second transition: selection effects which typically lead to downward 

bias and scaling effects which lead to upward bias. Furthermore, we also need to apply parametric 

assumptions on the model governing selection and true effects to distinguish between true and 

attenuation effects. The BPSM addresses selection effects by allowing for the unobserved effects to 

be correlated across transitions. The BPSM does not, however, address scaling effects. 

In practice, it is very difficult to deal effectively with selection effects. Equation (3) 

shows that the selection effect enters the model as a nonlinear function of the explanatory variables 

in the first transition. If these explanatory variables are the same as those also included in the 
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second transition (i.e. 
1 2x x , this is typically the case when analysts use time-invariant family 

background variables), the only difference between the selection effect  1 1x  in Equation (3) 

and the true effects of the explanatory variables in the second transition,
2 2x  is the nonlinear 

specification of  . . In other words, the only reason why we can separate true effect from 

selection effect is the functional form assumption imposed on the selection function  . . This 

situation is unsatisfactory because, first, we deal with selection bias by imposing functional form 

assumptions that are completely exogenous to the data we analyze and, second, in practice there is 

often so little variation in  . compared to the variation in x2 that the BPSM is unidentified.  

One way of improving identification of the BPSM is to include extra explanatory 

variables which appear in the models for each educational transition. These variables act as 

“instrumental variables” which induce exogenous variation in the probability of making each 

transition. The instrumental variables should affect the probability of making a specific educational 

transition but should not have any direct effect on other educational transitions. By including these 

variables one insures that the selection effect varies independently of the true effect and that the 

BPSM is not exclusively identified from functional form assumptions. In practice, it is often 

difficult to find credible instrumental variables. This challenge adds further complexity to the 

problem of addressing selection on unobserved variables in educational transition models. In our 

empirical example, we include transition-specific instrumental variables which we argue affect only 

the first and second educational transitions students make in the British educational system. 

 

3. Empirical Example 
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The first part of the paper has shown how selection on unobserved variables and scaling effects may 

lead to bias in the Mare model. Furthermore, we have introduced the BPSM as a simple, alternative 

approach which addresses selection on unobserved variables. 

In this second part of the paper we provide an empirical illustration of how the BPSM 

may be used to address selection on unobserved variables. We analyze data from the National Child 

Development Study (NCDS). This data set is well suited for our analysis because, first, the British 

educational system at the time when the NCDS respondents completed their education (the 1960s 

and 1970s) had a “ladder” structure similar to that implied in the Mare model and, second, the 

NCDS includes variables which may be used as credible instrumental variables which help to 

identify the BPSM. Our example is loosely built around trying to distinguish between a “waning 

coefficients” hypothesis and a “constant inequality” hypotheses. The former hypothesis states that 

the effect of family background decreases across educational transitions and the latter hypothesis 

states that the effect is constant across transitions. Distinguishing between these two different 

hypotheses is important for theoretical and substantive reasons and has been a recurring theme in 

the literature using the Mare model (e.g., Raftery & Hout 1993; Shavit & Blossfeld 1993; Lucas 

2001). 

 

-- TABLE 2 ABOUT HERE -- 

 

3.1 Data 

We analyze data from the National Child Development Study (NCDS). The NCDS is an ongoing 

longitudinal study of all children (approximately 17500) born during the first week of March 1958 

in the United Kingdom (UK; see Plewis et al. 2004 for more information on the NCDS). The NCDS 

respondents have been followed since birth and surveys have been carried out in 1965, 1969, 1974, 
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1981, 1991, 1999/2000, 2004, and 2008-2009. We use a sample from the NCDS, and our sample 

with non-missing information on all variables is 3955. Table 2 shows descriptive statistics for all 

variables used in the analysis for the whole sample and for the selective sample which makes the 

first transition. 

 

3.2 Variables 

3.2.1 Dependent Variables: Educational Transitions 

We construct two dummy variables to indicate whether respondents have completed each of two 

educational transitions: (1) A (advanced) level examinations and (2) higher education. In the UK 

students finish elementary school at around age 16. After finishing elementary school, students may 

choose to pursue A level examinations which, similarly with high school in the United States and 

the Gymnasium in Germany, provide access to higher education. Upon successful completion of 

their A levels, students may choose to enroll in higher education, for example university or 

university-college. In our NCDS sample 38 percent of the respondents complete A levels and, of 

those who complete A levels, more than 80 percent complete some type of higher education. These 

frequencies suggest that in the UK the first transition into A levels is highly selective while the 

second transition into higher education is not very selective.  

 

3.2.2 Explanatory Variables 

We include three family background variables which have often been used in previous research: 

father’s education (measured by years of completed schooling), mother’s education (years of 

completed schooling), and a dummy variable indicating whether respondents grew up in a single-

parent household.  
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In addition to these family background variables, we also include variables measuring 

respondents’ sex, cognitive ability, and exam performance. Our measure of cognitive ability is the 

first, standardized principal component extracted from a Principal Component Analysis of 

respondents’ scores on seven different math, reading, and general ability tests taken from age 7 to 

age 16. This variable (which accounts for 68.7 percent of the total variance in the seven ability 

tests) is corrected for random measurement error and is a good proxy for respondents’ “true” 

cognitive ability. We also include two measures of exam performance. The first measure is the 

respondent’s performance on the General Certificate of Education (GCE) exams taken around age 

16 at the end of elementary school. The NCDS includes equivalent scales of 21 O-level/CSE exams 

(with the codes: 1 = O-level, grade A or B; 2 = O-level, grade C and CSE grade 1; 3 = O-level, 

grade D or E and CSE grade 2 or 3; 4 = CSE grade 4 or 5; 5 = other result; 6 = no entry). Similarly 

with Breen and Yaish (2006), we invert these codes (meaning that higher values signify a better 

grade) and summarize respondents’ total score across the 21 exams. The second measure of exam 

performance is the respondent’s achievement at the A level examination taken at around age 18. 

The NCDS includes a variable which measures A level grades in the form of a 15-point scale 

formed by summing the three best A-level grades. 

 

-- TABLE 3 ABOUT HERE -- 

 

3.3 Results from the Empirical Example 

Table 3 shows results from the empirical example using NCD data. We estimate two different types 

of models: the Mare probit model and the bivariate probit selection model (BPSM). We used Stata’s 

probit command to estimate the Mare probit models and the heckprob command to estimate the 
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BPSM.
3
 To compare results using different information in the data we estimate three versions of 

each model: (1) a baseline model with the family background variables and gender; (2) a model 

which adds cognitive ability (which is invariant over the two educational transitions); and finally (3) 

a model which adds the two instrumental variables GCE performance (for the first transition) and A 

level performance (for the second transition). 

 Table 3 shows probit regression coefficients and average partial effects (APE) for 

each model specification. The APE expresses the population-averaged change in the probability of 

making an education transition resulting from a unit change in the explanatory variable of interest 

while holding all other explanatory variables constant, and it is easier to interpret than probit (or 

logit) coefficients. Table 3 also shows the estimated correlations between the unobserved variables 

in the BPSM,  . 

 From the baseline Mare probit model we find that parents’ education has highly 

significant and positive effects on the probability of completing A levels (the first transition). Each 

additional year of parents’ education increases the probability of completing A levels by 6-7 

percent. Being raised in a broken family decreases the likelihood of completing A level by 16.5 

percent. We also observe that the effects of parents’ education and family type are much lower at 

the second transition into higher education than in the first transition. The APEs for parents’ 

education in the second transition are less than half of those in the first transition, and the dummy 

for broken family is no longer significant. This result is consistent with the waning coefficients 

hypothesis. In the baseline BPSM we first observe that the estimated correlation between the 

unobserved variables   is negative and insignificant. Since   is the only additional (but 

                                                 

3
 The BPSM may also be estimated in SAS using PROC QLIM and in R using the sampleSelection package. Our NCDS 

sample data and Stata code for running the models presented in this section can be downloaded from the Research in 

Social Stratification and Mobility web site. 
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insignificant) parameter in the BPSM compared to the Mare probit model, we expect only trivial 

differences between the two models (the log-likelihoods for the two models are also almost 

identical). The main difference between the two model specifications is that parents’ education is 

only marginally significant in the second transition in the BPSM. However, the negative estimate of 

  is highly counterintuitive and may signal a poorly identified model, especially because the 

baseline BPSM does not include any instrumental variables. 

 In the second set of models we add cognitive ability. In both the Mare probit model 

and the BPSM we find that, in addition to cognitive ability having a highly significant and positive 

effect on the probability of completing both educational transitions, the effects of parents’ education 

and (in the first transition) the dummy for being raised in a broken family decrease dramatically. 

This result is not surprising since parents’ education is known to affect cognitive ability indirectly 

(e.g., Jackson et al. 2007). More importantly, we also find that the change in the effects of parents’ 

education across transitions are now less pronounced compared to the previous set of models in 

which cognitive ability was not included. This result tends to give more support to the constant 

inequality rather than the waning coefficient hypothesis. Including cognitive ability, arguably an 

important predictor of educational transitions which is often unobserved, improves our BPSM 

model. The estimated   is 0.271 but still far from being significant. Consequently, although we 

would expect improved identification of the unobserved variables in the model in which we are 

better able to control for important determinants of educational success such as cognitive ability, the 

BPSM is still unable to detect selection effects. 

 In the final set of models which include transition-specific instrumental variables: 

GCE exam performance in the first transition and A level performance in the second transition, we 

get more reliable results. The idea behind our instruments is that GCE and A level performance, net 

of observed cognitive ability and family background characteristics, capture respondents’ 



 21 

contemporaneous investments (time and effort) in making a particular educational transition. The 

GCE and A level exams are high-stake exams. Performing well at the GCE examinations improves 

the likelihood of making it into A levels but, conditional on having made it into A levels and 

observed A level performance, GCE performance arguably does not have any direct effect on the 

likelihood of making it into higher education. The validity of our exam performance instruments is 

further reinforced by the fact that in the NCDS we are also able to control reasonably well for 

respondents’ cognitive ability. This situation reduces the risk that we conflate the effect of cognitive 

ability (which is correlated with GCE and A level performance) with that of transition-specific 

investments (which is the exogenous and transition-specific variation we want to isolate).
4
  

Table 3 shows that both in the Mare probit model and the BPSM the exam 

performance measures have highly significant and positive effects on the probability of making the 

first and second educational transitions net of cognitive ability and family background. 

Consequently, our transition-specific instrumental variables appear to be working well. From the 

Mare probit model we find that the effect of parents’ education is declining across transitions and 

being raised in a broken family has a negative effect on the probability of making the first transition 

but no effect on the probability of making the second transition. Results are somewhat different for 

the second transition in the BPSM. Here, we find that the substantive effect of father and mother’s 

education do not differ much across transitions (measured by APEs) and significance levels indicate 

much stronger effects of parents’ education on the probability of making the second transition in the 

BPSM compared to the Mare Probit Model. These results suggest that, as might be expected 

because only 38 percent of NCDS respondents in our sample make the first transition, the Mare 

                                                 

4
 It would of course have been ideal to observe respondents’ cognitive ability both at age 16 (just prior to making the 

first transition) and at age 18 (just prior to making the second transition). If this were the case we could clearly separate 

the effect of cognitive ability from that of transition-specific investments. Unfortunately, there is no information on 

cognitive ability around age 18 in the NCDS. 
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probit model underestimates the true effect of family background on the probability of making the 

second transition due to the selective nature of the sample in the second transition. (See also Table 2 

which shows that respondents who make the first transition and who are eligible for the second 

transition come from much more privileged family backgrounds compared to the total sample) In 

other words, consistent with the constant inequality hypothesis there are strong effects of family 

background on the second educational transition as well as on the first transition. In the BPSM we 

find that the estimate of   is 0.550 and now statistically significant, thereby indicating that 

selection on unobserved variables is identified and present in the model. 

 

4. Conclusion 

The Mare model is a major contribution to the applied researcher’s toolkit when analyzing 

determinants of educational success. However, despite its many advantages the Mare model is 

susceptible to bias from selection on unobserved variables and from scaling effects. These sources 

of bias may be the reason why applied research using the Mare model has often reported that the 

effect of family background appears to “wane” across educational transitions. 

 In this paper we propose that a bivariate probit selection model (BPSM) may be 

preferable to the traditional Mare model. The BPSM deals with selection on unobserved variables 

by allowing for the unobserved variables which affect the probability of making lower educational 

transitions to be correlated with the unobserved variables which affect the probability of making 

higher educational transitions. Furthermore, the BPSM is conceptually easy to understand and it can 

be estimated using standard software. The potential drawbacks of the BPSM are that is requires 

parametric assumptions and instrumental variables to be properly identified. Also, the BPSM does 

not remedy scaling effects. 
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We use simulated data and data from the National Child Development Study (NCDS) 

to illustrate how selection on unobserved variables leads to bias in the traditional Mare model and 

how our BPSM copes with selection. Our simulations show that the Mare model yields increasingly 

biased results as the strength of selection on unobserved variables increases. The BPSM yields 

consistent results even in the presence of selection on unobserved variables. Our results using 

NCDS data show that identification of the BPSM and, consequently, our ability to effectively 

address the problem of selection on unobserved variables is highly contingent upon data quality and 

the amount of information that is available in the data. “Naïve” Mare models which do not address 

selection on unobserved variables and which do not control for cognitive ability (or other important 

determinants of educational success which are often unobserved) suggest that the effect of family 

background decreases across the two educational transitions we study. This finding is consistent 

with the waning coefficients hypothesis. However, our most sophisticated BPSM which includes 

cognitive ability, transition-specific instrumental variables, and which provides credible estimates 

of the correlation between the unobserved variables, suggests that the effect of family background is 

largely constant across educational transitions. This result is consistent with the constant inequality 

hypothesis. 

Our analysis has two implications for future research. First, we provide strong 

evidence that the traditional Mare model is highly susceptible to bias from selection on unobserved 

variables. Consequently, analysts who wish to study educational transitions should use modeling 

approaches that deal with the inherent selectivity issues in these types of analyses. This result also 

applies to analysts who study later educational transitions but ignore earlier transitions. Our findings 

suggest that these types of analyses also yield biased results unless the selectivity of earlier 

transitions is taken into account. Second, we argue that data quality and the extent to which the data 

is informative about the processes that explain selection is crucial for dealing effectively with 
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selection on unobserved variables. There is no methodological “magic bullet” which fixes bias from 

selection on unobserved variables in educational transition models, and empirical results ultimately 

depend on data quality. The different approaches and results presented in this special issue clearly 

demonstrate this point. Consequently, improving data quality is an important task for future 

research analyzing educational transitions. 
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Appendix 1.  

The Effect of Scaling on the Estimated Parameters in the Second Educational Transition 

Define the Inverse Mills’ Ratio as  
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where  . and  .  are the standard normal density and distribution functions (Heckman 1979).  

Note that    * 2 * *

2 2 1| 0Var Y Var Y Y    because  

 

         2* * * 2 2

2 1 2 1 1 1 1 1 1 1| 0 | 0 1Var Y Y Var Y Y x x x              

 

(Heckman 1979). Also note that  2 *

2 1| 0Var Y Y    since the term 

   
2

1 1 1 1 1 10 1x x x       . Finally, note that this relationship only exists because of the 

assumption of joint normality. 
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Appendix 2. The Approximation of the Conditional Probability of Making the Second 

Educational Transition 

In this appendix we derive the expression in Equation (1) which we use to show analytically the 

effect of selection on unobserved variables and scaling on the conditional probability of making the 

second transition. The joint probability of making both the first and the second transition is 
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where  2 1 2 1|e e e e  . The mean and variance of 2 1|e e depends on the value of the outer 

integrand and has no closed form solution. However, noting that    * *

2 1 2 2 1 1| 0E Y Y x x      

and       2* * 2

2 1 1 1 1 1 1 1var 0 | 0 1Y Y x x x           suggests that we may approximate the 

conditional distribution of 2 1|e e with 
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Table 1  

Bias in Different Model Specifications Using Simulated Data. 

 Model Rescaled 

Coefficient 

Standard 

Deviation 

1 Mare probit model  0.840 0.150 

2 Mare probit model with 
2  1.019 0.120 

3 BPSM 1.023 0.168 

The reported coefficient is the rescaled coefficient of x1 in the model for y2 = 1 in Equation (3). 
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Table 2 

Descriptive Statistics for NCDS Sample. Means and Standard Deviations (SD) 

Educational Attainment: Mean SD 

Proportion of sample that completes A levels 0.384 - 

Proportion of sample that completed A levels which 

also completed higher education 

0.825 - 

   

Explanatory Variables:   

Whole Sample:   

  Father’s education 10.094 2.089 

  Mother’s education 10.024 1.603 

  Broken family 0.094 - 

  Gender (= female) 0.555 - 

  Cognitive ability 0.000 1.000 

  GCE performance 14.958 12.657 

   

Sample Which Completes A levels:   

  Father’s education 10.996 2.788 

  Mother’s education 10.698 2.134 

  Broken family 0.054 - 

  Gender (= female) 0.525 - 

  Cognitive ability 0.837 0.689 

  A level performance 2.727 4.155 
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Table 3 

Results from Mare Probit Models and Bivariate Probit Selection Models (BPSM). Probit Regression Coefficients, Standard Errors in 

Parenthesis, and Average Partial Effects in Brackets. 

 Mare Probit 

Model (1) 

BPSM  

(1) 

Mare Probit 

Model (2) 

BPSM  

(2) 

Mare Probit 

Model (3) 

BPSM  

(3) 

A LEVELS       

Father’s education 0.173 (0.014)*** 

[0.057] 

0.173 (0.014)*** 

[0.057] 

0.104 (0.016)*** 

[0.025] 

0.105 (0.016)*** 

[0.025] 

0.096 (0.016)*** 

[0.022] 

0.097 (0.016)*** 

[0.022] 

Mother’s education 0.221 (0.019)*** 

[0.072] 

0.221 (0.019)*** 

[0.072] 

0.144 (0.021)*** 

[0.034] 

0.145 (0.021)*** 

[0.034] 

0.137 (0.021)*** 

[0.032] 

0.137 (0.021)*** 

[0.032] 

Broken family 

 

-0.550 (0.080)*** 

[-0.165] 

-0.550 (0.080)*** 

[-0.165] 

-0.312 (0.093)*** 

[-0.073] 

-0.313 (0.093)*** 

[-0.073] 

-0.286 (0.094)*** 

[-0.065] 

-0.290 (0.093)*** 

[-0.065] 

Gender  

(= female) 

-0.134 (0.043) 

[0.044] 

-0.134 (0.043)** 

[0.044] 

-0.135 (0.050)** 

[0.032] 

0.133 (0.050)* 

[0.032] 

-0.165 (0.050)*** 

[-0.039] 

-0.164 (0.050)*** 

[-0.039] 

Cognitive  

Ability 

  1.016 (0.034)*** 

[0.243] 

1.015 (0.034)*** 

[0.243] 

0.868 (0.038)*** 

[0.202] 

0.861 (0.038)*** 

[0.195] 

GCE  

performance 

    0.020 (0.002)*** 

[0.005] 

0.020 (0.002)*** 

[0.005] 

       

HIGHER 

EDUCATION 

      

Father’s  

education 

0.089 (0.020)*** 

[0.025] 

0.062 (0.033)* 

[0.014] 

0.063 (0.022)*** 

[0.018] 

0.073 (0.041)* 

[0.020] 

0.047 (0.023)** 

[0.014] 

0.074 (0.023)*** 

[0.017] 

Mother’s  

education 

0.069 (0.026)*** 

[0.019] 

0.036 (0.043) 

[0.008] 

0.056 (0.027)** 

[0.016] 

0.073 (0.062) 

[0.018] 

0.056 (0.029)* 

[0.017] 

0.098 (0.032)*** 

[0.023] 

Broken  

family 

-0.107 (0.165) 

[-0.031] 

0.002 (0.200) 

[0.000] 

-0.044 (0.174) 

[-0.012] 

-0.095 (0.225) 

[-0.044] 

-0.030 (0.183) 

[-0.009] 

-0.141 (0.171) 

[-0.033] 

Gender  

(= female) 

-0.126 (0.078)* 

[-0.035] 

-0.095 (0.080) 

[-0.021] 

-0.075 (0.084) 

[-0.021] 

-0.092 (0.095) 

[0.001] 

-0.064 (0.089) 

[-0.019] 

-0.110 (0.083) 

[-0.026] 

Cognitive  

ability 

  0.815 (0.062)*** 

[0.230] 

0.934 (0.388)** 

[0.250] 

0.621 (0.066)*** 

[0.184] 

0.916 (0.108)*** 

[0.217] 

A level 

performance 

    0.271 (0.041)*** 

[0.080] 

0.257 (0.041)*** 

[0.061] 
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  (and p-value for 

test of 0  ) 

 -0.278 (0.487)  0.271 (0.639)  0.550 (0.051) 

Log-likelihood -2961 -2961 -2551 -2251 -2171 -2169 

* p < 0.10, ** p < 0.05, *** p < 0.01. The number of observations in all models is 3955. The estimates of the BPSM for the second 

transition into higher education are adjusted by 2ˆ1  in order to be comparable with the corresponding estimates for the Mare probit 

model. The reported log-likelihood values for the Mare probit models summarize the log-likelihoods for the first and second transition. 
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Fig 1. Bias in the Mare Probit and Bivariate Probit Selection Model 

In order to obtain  higher than 0.5 we weigh down 1 2,u u and weigh up 1 2,e e in the simulations  

using weights that ensure constant error variance in all simulations. 
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