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Comparing Regression Coefficients Between Models using Logit and Probit: 

A New Method 

 

Introduction 

Nonlinear probability models such as binary logit and probit models are widely used in 

quantitative sociological research. One of their most common applications is to estimate the 

effect of a particular variable of interest on a binary outcome when potentially confounding 

variables are controlled. Interest in such genuine or “true” coefficients has a long history in 

the social sciences and is usually associated with the elaboration procedure in cross-

tabulation suggested by Lazarsfeld (1955, 1958; Kendall and Lazarsfeld 1950; cf. Simon 

1954 for partial product moment correlations). Nevertheless, controlled logit or probit 

coefficients do not have the same straightforward interpretation as controlled coefficients in 

linear regression. In fact, comparing uncontrolled and controlled coefficients across nested 

logit models is not directly feasible, but this appears to have gone unrecognized in much 

applied social research, despite an early statement of the problem by Winship and Mare 

(1984). 

In this paper we offer a solution. We develop a method that allows unbiased 

comparisons of logit or probit coefficients of the same variable (x) across nested models 

successively including control variables (z). The method decomposes the difference in the 

logit or probit coefficient of x between a model excluding z and a model including z, into a 

part attributable to confounding (i.e., the part mediated or explained by z) and a part 

attributable to rescaling of the coefficient of x. Our method is general because it extends all 

the decomposition features of linear models to logit and probit models. In contrast to the 

method of y-standardization (Winship and Mare 1984; cf. Long 1997), our method is an 
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analytical solution and it does not depend on the predicted index of the logit or the probit. 

Moreover, contrary to popular belief, we prove that average partial effects (as defined by 

Wooldridge 2002) can be highly sensitive to rescaling. However, casting average partial 

effects in the framework developed in this paper solves the problem created by rescaling 

and thereby provides researchers with a more interpretable effect measure than 

conventional logit or probit coefficients. 

We focus on models for binary outcomes, in particular the logit model, but 

our approach applies equally to other nonlinear models for nominal or ordinal outcomes. 

We proceed as follows. First, we present the problem of comparing coefficients across 

nested logit or probit models. Second, we formally describe the rescaling issue and show 

how to assess the relative magnitude of confounding relative to rescaling. We also develop 

test statistics that enable formal tests of confounding and rescaling. Third, we show that our 

method is preferred over y-standardization and average partial effects. Fourth, we apply our 

method to simulated data and to data from the National Educational Longitudinal Survey. 

We conclude with a discussion of the wider consequences for current sociological research. 

 

Comparing coefficients across logit and probit models 

In linear regression, the concept of controlling for possible confounding variables is well 

understood and has great practical value. Researchers often want to assess the effect of a 

particular variable on some dependent variable net of one or more confounding variables. A 

general consequence of this feature is that researchers can compare controlled (partial) 

coefficients with uncontrolled (gross) coefficients, that is, compare coefficients across same 

sample nested models. For example, a researcher might want to assess how much the effect 

of years of education on log annual income changes when holding constant academic 
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ability and gender. In this case the researcher would compare the uncontrolled coefficient 

for years of education with its counterpart controlling for ability and gender. The difference 

between the two coefficients reflects the degree to which the impact of years of education is 

mediated or confounded by ability and gender.1 This kind of design is straightforward 

within the OLS modeling framework and is probably one of the most widespread practices 

in empirical social research (Clogg, Petkova, and Haritou 1995). 

 In logit and probit models, however, uncontrolled and controlled coefficients 

can differ not only because of confounding but also because of a rescaling of the model. In 

this case the size of the estimated coefficient of the variable of interest depends on the error 

variance of the model and, consequently, on which other variables are in the model. 

Including a control variable, z, in a logit or probit model will alter the coefficient of x 

whether or not z is correlated with x, because, if z explains any of the variation in the 

dependent variable, its inclusion will reduce the error variance of the model. Consequently, 

logit or probit coefficients from different nested models are not measured on the same scale 

and are therefore not directly comparable. This comes about because, in nonlinear 

probability models, the error variance is not independently identified and is fixed at a given 

value (Cramer 2003:22).2 This identification restriction is well known in the literature on 

limited dependent variable models (Yatchew and Griliches 1985, Long 1997; Powers and 

Xie 2000; Cramer 2003; Winship and Mare 1984; Maddala 1983; Amemiya 1975; Agresti 

2002), but the consequences of rescaling for the interpretation of logit or probit coefficients 

                                                 
1 We use ‘confounding’ as a general term to cover all cases in which additional variables, z, are correlated 
with the original explanatory variable, x, and also affect the dependent variable, y. This includes cases where 
the additional variables are believed to ‘mediate’ the original relationship x and y. In terms of path analyses, 
the part of the x-y relationship mediated or confounded by z is the indirect effect. 
2 This identification restriction holds for all models in which the error variance is a direct function of the mean 
(McCullagh and Nelder 1989). In the linear regression model, the mean and error variance are modeled 
independently. 
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are far from fully recognized in applied social research (for similar statements, see Allison 

1999, Hoetker 2004; 2007, Williams 2009, or Mood 2010).  

One very important reason why we should be concerned with this problem 

arises when we have a policy variable, z, which we believe will mediate the relationship 

between x and a binary outcome, y. Typically, we might first use a logit model to regress y 

on x to gauge the magnitude of the relationship, and then we might add z as a control to find 

out how much of the relationship is mediated via z. This would seem to tell us how much 

we could affect the x-y relationship by manipulating z. But, as we show below, in general 

such a strategy will tend to underestimate the mediating role of z, increasing the likelihood 

of our concluding, incorrectly, that changing z would have little or no impact on the x-y 

relationship. 

Known solutions to the problem of comparing coefficients across nested logit 

or probit models are to use y-standardization (Winship and Mare 1984) or to calculate 

average partial effects (Wooldridge 2002). However, as we show, these solutions are 

insufficient for dealing with the problem of comparing logit or probit coefficients across 

models in a satisfactory manner.  

 

Separating confounding and rescaling 

In this section, to set the notation, we first formally show how coefficient rescaling operates 

in the logistic regression model.3 After this exposition, we introduce a novel method that 

decomposes the change in logit coefficients across nested models into a confounding 

component and a rescaling component. We also develop analytical standard errors and t-

                                                 
3 The results hold equally for probit models. 
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statistics for each component, and point out an unrecognized similarity with a test statistic 

provided in Clogg, Petkova, and Haritou (1995) for linear models. 

 

Latent linear formulation of a logit model 

Let *y  be a continuous latent variable representing the propensity of occurrence of some 

sociologically interesting response variable (e.g., completing a particular level of education, 

committing a crime, or experiencing a divorce). Let x be an explanatory variable of interest 

(e.g., parental education, parental criminal behavior, or one’s own educational attainment), 

and let z be a set of control variables (e.g., academic ability, mental well being, or number 

of children). In this exposition we assume that x and z will be correlated, thereby allowing 

for z to confound the x-y* relationship. Omitting individual subscripts and centering x and z 

on their respective means (i.e., omitting the intercepts), we follow the notation for linear 

models in Clogg, Petkova, and Haritou (1995; cf. Blalock 1979) and specify two latent 

variable models: 

 *
RH :              ,   ( )yx Ry x e sd eβ σ= + =    (1) 

 *
FH :             ,   ( ) ,yx z yz x Fy x z v sd vβ β σ⋅ ⋅= + + =   (2) 

HR and HF denote the reduced and full model respectively and we take HF to be the true 

model.4 However, an identification problem arises because we cannot observe y*: instead 

we observe y, a dichotomized version of the latent propensity such that: 

1 if *

0 otherwise,

y y

y

τ= >
=

    (3) 

                                                 
4 Following Clogg, Petkova, and Haritou (1995) we use the term “full model” to denote the model including 
controls, while we denote the model without controls the “reduced model”. Since both models cannot be true 
simultaneously, we hold the full model to be the “true” model, i.e., the model on which we will base our 
inferences. 
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where τ is a threshold, normally set to zero.5 The expected outcome of this binary indicator 

is the probability of choosing 1y = , i.e., ( 1) Pr( 1)E y y= = = . Assuming that the error terms 

in (1) and (2) follow a logistic distribution we can write the two latent models in the form 

*y x e x uβ β σ= + = +  where σ  is a scale parameter and where u is a standard logistic 

random variable with mean 0 and standard deviation / 3π  (Cramer 2003:22; Long 

1997:119).6 Using this additional notation and setting0τ = , we obtain the following two 

logit models, corresponding to (1) and (2) above: 

 ( )

( )
( )

Logit
RH : 

exp

Pr( 1) Pr * 0 Pr    

1 exp

exp
logit(Pr( 1)) .

1 exp

yx

yx R

yxR

R

yx yx
yx

Ryx

x

y y u x

x

b x
y b x

b x

β
β σ

βσ
σ

β
σ

 
 

   = = > = < − = 
   +  
 

= ⇔ = = =
+

  (4) 

and in a similar way we obtain the full model 

( )
( )

Logit
FH : 

exp
Pr( 1)

1 exp

logit(Pr( 1))

yx z yz x

yx z yz x

yx z yz x
yx z yz x

F F

b x b z
y

b x b z

y b x b z x z
β β
σ σ

⋅ ⋅

⋅ ⋅

⋅ ⋅
⋅ ⋅

+
= =

+ +

⇔ = = + = +

  (5) 

where the residual standard deviations, Rσ  and Fσ , are defined in Models HR and HF.  We 

can immediately see that the coefficients for x from the two models, yxb  and yx zb ⋅ , are 

influenced not only by whether other variables are included in the model but also by the 

magnitude of the residual variance. 

                                                 
5 Whenever the threshold constant is nonzero, it is absorbed in the intercept of the logit model. However, it 
does not affect the effect estimates. Therefore, we set the threshold to zero in this paper. 
6 Had we assumed u to be a standard normal random variable with mean 0 and standard deviation 1, we would 
have obtained the probit. 
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Two sources of change: Confounding and rescaling 

From the logit models in (4) and (5) we see that, because we cannot estimate the variance 

of *y  (i.e., we only observe y as in (3)), a restriction is necessary for identifying the model. 

This means that we cannot estimate the regression coefficients of x of the underlying 

models in (1) and (2), but only 

 ;   yx yx z
yx yx z

R F

b b
β β
σ σ

⋅
⋅= = .    (6) 

 

In words, the estimated logit coefficients are equal to the underlying coefficients divided by 

the residual standard deviation. Therefore, controlling a variable of interest (x) for a 

confounding variable (z) that explains variation in the dependent variable (y) will alter the 

coefficient of interest as a result of both confounding and rescaling. Confounding occurs 

whenever x and z are correlated and z has an independent effect on y* in the full model. 

Rescaling occurs because the model without the confounding variable, z, has a different 

residual standard deviation than the model that includes the confounding variable (Rσ  as 

opposed to Fσ ). Because we explain more residual variation in the full model than in the 

reduced model, it holds that R Fσ σ> . The logit coefficients of x are therefore measured on 

different scales.7 

                                                 
7 Rescaling will also affect the odds-ratio, i.e., the exponentiated logit coefficient. Because of the simple 
relation between log-odds-ratios and odds-ratios, this impact is straightforward to show. By odds-ratio we 
mean the relative probability or odds for the event of interest between two different individuals, i.e., if Y is a 
binary dependent variable and x and x’ are two different values of an independent variable, then the odds-ratio 

is defined as 
( 1| ) ( 1| ')

1 ( 1| ) 1 ( 1| ')

P Y X x P Y X x

P Y X x P Y X x

= = = =
− = = − = =

and then the log-odds-ratio becomes 

( ) ( )( 1| ) ( 1| ')ln ln1 ( 1| ) 1 ( 1| ')
P Y X x P Y X x

P Y X x P Y X x
= = = =−− = = − = = , which is equal to /xβ σ

 

if the probability of Y follows a logistic distribution, where *y x eα β σ= + +
 
with *y

 
being a continuously 
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The solution 

When employing the logit model, we are interested in the difference between the 

underlying coefficients, yxβ  and yx zβ ⋅  in (1) and (2), because this difference is the result of 

confounding only (and not rescaling). However, because we only observe the coefficients 

in (6) we cannot distinguish between changes in yxb  compared to yx zb ⋅  due to rescaling and 

to confounding: 

 .yx yx z
yx yx z yx yx z

R F

b b
β β

β β
σ σ

⋅
⋅ ⋅− = − ≠ −    (7) 

Moreover, researchers making the naïve comparison in (7) will generally underestimate the 

role played by confounding, because R Fσ σ> . In certain circumstances, rescaling may 

counteract confounding such that the last difference in (7) is zero, which may lead to the 

(incorrect) impression that z does not mediate or confound the effect of x.8 Researchers may 

also incorrectly report a suppression effect, which is not a result of confounding (i.e., x and 

z are uncorrelated), but only a result of rescaling (i.e., z has an independent effect on y). The 

problem stated in (7) may be known by most sociologists specializing in quantitative 

methods, though the sociological literature is replete with examples in which the naïve 

comparison is made and interpreted as though it reflected pure confounding. Moreover, 

although tentative solutions exist, they have not diffused into text books on the topic or into 

applied research.  

 Now we present a method that overcomes the cross-model coefficient 

comparability problem. Let zɶ  be a set of x-residualized z-variables such that their 

correlation with x is zero, i.e., 0xzr =ɶ . In other words, zɶ  is the residual from a regression of 

                                                                                                                                                     
distributed latent variable, e being a type I extreme valued distributed residual term, and σ

 
being a scale 

parameter.  
8 See the Example section. 
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z on x. Centering zɶ  on its mean (i.e., omitting the intercept), we specify a new latent linear 

model: 

 * * *
FH :        z    ,   ( ) .yx z yz x Fy x k sd kβ β σ⋅ ⋅= + + =ɶ ɶ ɶ   (8) 

Compared to the full latent linear model in (2), which includes the control variables (z), the 

model in (8) includes instead the x-residualized counterparts, zɶ . Because models (1), (2), 

and (8) are linear we can prove the two following equalities: 

yx yx zβ β ⋅= ɶ      (9) 

*
F Fσ σ=      (10) 

In other words, the coefficient of x in RH  is the same as in *FH , and the residual standard 

deviation of FH  equals the residual standard deviation of *
FH . To show (9) formally, we 

again assume that x, z, and zɶ  are mean-centered, and for simplicity we assume z to be a 

scalar. We use the specification of Models (1) and (8) such that 

( )
( )

( )
( )

*

2 2
        and          yx

E xy E xz
z z x

E x E x
β = = − ⋅ɶ  . 

From the basic principles of OLS, we have  

( ) ( ) ( ) ( )
( ) ( ) ( )

( )
( )

2 * * *

2 2 22
yx z yx

E z E xy E xz E zy E xy

E x E z E xz E x
β β⋅

−
= = =

−ɶ

ɶ ɶ ɶ

ɶ ɶ
, 

where the second last equality is true, because we have ( ) 0E xz =ɶ
 
by construction. Thus 

we have proved (9), and this leads immediately to the proof of (10): 
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( )
( )

( )
( )

( )

*

*

2

*

2

*

*

yx z yz x

yx z yz x

yx z yz x yz x

yx z yz x zx yz x

yx z yz x

k y x z

E xz
y x z x

E x

E xz
y x x z

E x

y x z

y x z

v

β β

β β

β β β

β β θ β

β β

⋅ ⋅

⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅

= − −

 
 = − − − ⋅
 
 

= − − ⋅ −

= − − −

= − −
=

ɶ ɶ

ɶ

ɶ

ɶ

ɶ

,

 

where 
( )
( )2zx

E xz

E x
θ = . The relation *   y , ,  k v x z= ∀  implies that *

F Fσ σ= . Thus we have 

proved (10). Given the equality in (10), we see that *
FH  in (8) is a re-parameterization of 

FH  in (2), i.e., they reflect the same latent linear model. 

 We now rewrite the latent linear model in (8) into a corresponding logit 

model. We employ the same strategy defined by (3), (4), and (5) and obtain the following 

model: 

 Logit*
F * *

H :  logit(Pr( 1)) .yx z yz x
yx z yz x

F F

y b x b z x z
β β
σ σ

⋅ ⋅
⋅ ⋅= = + = +ɶ ɶ

ɶ ɶ ɶ ɶ  (11) 

Similar to the linear case, this model is a re-parameterization of Logit
FH , i.e., the two models 

have the same fit to the data. We may now exploit the equalities in (9) and (10) and the 

specifications of the logit models to overcome the comparison issue encountered in (7). In 

other words, we can make an unbiased comparison of coefficients of x without and with a 

confounding variable, z, in the model. We propose three measures of coefficient change 

that hold rescaling constant (i.e., that measure confounding net of rescaling). The first 

measure is a difference measure: 

*

yx z yx z yx yx z yx yx z
yx z yx z

F F F F F

b b
β β β β β β
σ σ σ σ σ

⋅ ⋅ ⋅ ⋅
⋅ ⋅

−
− = − = − =ɶ

ɶ  ,    (12a) 
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where the first equality is due to the definitions in (6) and the second is due to (9) and (10). 

This result tells us that the difference between the two logit coefficients of x in Logit*
FH  and 

Logit
FH  stated in (12a) measures the impact of confounding in relation to the same amount of 

scaling, here the residual standard deviation of the full model. The difference in (12a) is a 

logit coefficient and like normal logit coefficients it is only identified up to scale. It 

measures the change in the coefficient of x attributable to confounding due to the inclusion 

of z, conditional on the full model holding true. Since we usually prefer basing our 

inference on the full model rather than the reduced model (see Clogg, Petkova, and Haritou 

1995), this is an important result. 

The second measure is a ratio measure, which is a scale free measure of 

confounding net of coefficient rescaling: 

*
yx z yx z

yx z yx z yxF F

yx z yx zyx z yx z yx z

F F

b

b

β β
β βσ σ

β β β β
σ σ

⋅ ⋅

⋅ ⋅

⋅ ⋅⋅ ⋅ ⋅

= = = =

ɶ ɶ

ɶ ɶ .   (12b) 

In other words, the ratio between the two logit coefficients of x in Logit*
FH  and Logit

FH  

measures the impact of confounding (i.e., the impact net of the rescaling). In fact, in (12b) 

the scale parameter disappears, making it a scale free measure of coefficient change. A 

third measure, which we believe has considerable practical relevance, is the percentage 

change in the coefficients that is attributable to confounding, net of scaling: 

|
*

( )
100% 100% 100% 100%

yx z yx z

yx z yx z yx z yx z yx yx zF

yx zyx z x z yx

F

b b

b

β β
β β β βσ

β β β
σ

⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅⋅

−
− − −

× = × = × = ×

ɶ

ɶ ɶ

ɶɶ ɶ

 (12c) 

Whether a researcher prefers the scale dependent difference measure stated in (12a) or the 

scale free ratio measure and percentage change measure stated in (12b) and (12c) may not 
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simply be a matter of choice but should depend on the objective of the research. The 

measures have different interpretations. The difference measure in (12a) has the same 

properties as a normal logit coefficient and can be treated as such: researchers interested in 

the coefficients of the logit model should therefore adopt the difference measure. The ratio 

and percentage change measures have a different interpretation, because they are concerned 

with the regression coefficients in the latent model. The ratio in (12b) and the percentage 

change in (12c) measure change in the underlying partial effects on the latent propensity 

rather than in the logit coefficients. We therefore encourage researchers interested in the 

underlying partial effects to use these scale free measures. 

 If, in addition, we want to know the magnitude of rescaling net of the impact 

of confounding, we need to know the relationR
F

σ
σ

, i.e., the ratio between the error standard 

deviations in the reduced and full model. Given (9) and (10), we find that 

* *

yx yx

yx FR R

yx z yxyx z R

F F

b

b

β β
σσ σ

β β σ
σ σ

⋅⋅

= = =
ɶɶ

.    (13)

 

In other words, the ratio between the two observed coefficients of x in Logit
RH  and Logit*

FH  

measures the impact of rescaling, net of confounding. Because R Fσ σ> , we know that 

yx

yx z

b

b ⋅ ɶ

< 1. From (12) and (13) we have the ratio decomposition of the observed change in the 

coefficient for x across nested models:  

yx yx z yx

yx z yx z yx z

b b b

b b b
⋅

⋅ ⋅ ⋅

= ×ɶ
ɶ

,    (14a) 

where the first term on the right hand side captures confounding and the second captures 

rescaling. Similarly we derive the additive decomposition: 
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* *
[ ] [ ]yx yx z yx yx z yx z yx z

yx yx z yx yx z yx z yx z
R F R F F F

b b b b b b
β β β β β β
σ σ σ σ σ σ

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅− = − = − + − = − + −ɶ ɶ

ɶ ,   (14b) 

where the first term on the right hand side equals rescaling and the second captures 

confounding. Notice that the component induced by rescaling is equal to 

yx yx
yx yx z

R F

b b
β β
σ σ⋅− = −ɶ , 

and thus captures the effect, on the logit coefficients, of the change in the residual standard 

deviation, holding constant the underlying coefficient.  

 Rather than looking at the influence of confounders in terms of the rescaling 

after adding controls (i.e., using the standard deviation from the full model), a researcher 

may want to evaluate this influence in terms of the scaling before adding controls (i.e., 

using the standard deviation from the reduced model). Combining the coefficients of x in 

Models (4), (5), and (11), we obtain: 

 * .yx xy yx zyx z yx z yx z yx

F F F FR R R

β β ββ β β β
σ σ σ σσ σ σ

⋅⋅ ⋅ ⋅× = × =ɶ  

From these equations we obtain the influence of confounding conditional on the reduced 

model holding true: 

 yx yx z

R

β β
σ

⋅−
              (15) 

However, compared to the difference in (12a), the standard error of the difference in (15) is 

more difficult to compute. To test the difference in (12a), we calculate the standard error for 

the difference between the observed regression coefficients, yx z yx zb b⋅ ⋅−ɶ . This calculation is 

straightforward because both coefficients are asymptotically normal (see below). For (15), 

however, matters are more difficult because we have to obtain yx z

R

β
σ

⋅  as a quotient between 



 15 

several observed quantities. We therefore recommend using (12a) rather than (15) to assess 

the influence of confounding. And, to reiterate, in using (12) rather than (15) we are basing 

our inferences on the true model.  

 

Two formal tests 

We have shown how rescaling operates in the logit model and developed a simple way of 

decomposing the change in logit coefficients of the same variable into one part attributable 

to confounding and another part attributable to rescaling. However, we also develop two 

formal statistical tests that enable researchers to assess whether the change in a coefficient 

attributable to confounding is statistically significant and whether rescaling distorts the 

results to any statistically significant degree.  

For generalized linear models and thus also for logit models, Clogg, Petkova, 

and Haritou (1995) show that the standard error of the difference between an uncontrolled 

( yxb ) and a controlled (yx zb ⋅ ) logit coefficient is 

 

2 2

2 2 2 2

( ) ( | ) ( | ) 2 ( , )

( | ) ( | ) ( ) ( | ) 2 ( | )

yx yx z yx z F yx F yx z yx

T
yx z F yx R yx R yx R

SE b b SE b H SE b H Cov b b

SE b H SE b H X WX SE b H SE b H

⋅ ⋅ ⋅

⋅

− = + −

= + −
. (16) 

This somewhat complex expression takes into account the rescaling of the model, because 

it involves the variance of yxb  conditional on the full model, HF, holding true (HR being the 

reduced model). However, while (16) takes into account the rescaling of the standard error 

of the difference, it neglects the fact that the difference, yx yx zb b ⋅− , conflates confounding 

and rescaling (see (7)). Thus (16) is suitable for coefficient comparisons that mix 

confounding and rescaling, but not for comparisons that separate the two sources of change 

(see Clogg et al 1995: 1286 Table 5 for an application of their approach to comparing logit 

coefficients that does not differentiate the two sources of difference). And since separating 
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confounding and rescaling is precisely our aim, we derive the expression for the standard 

error of the difference between the standardardized (i.e. net of rescaling) coefficients.  This 

is given by  

2 2( ) ( ) ( ) 2 ( , )yx z yx z
yx z yx z yx z yx z yx z yx z

F

SE b b SE SE b SE b Cov b b
β β

σ
⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

− 
− = = + − 

 

ɶ

ɶ ɶ ɶ .  (17) 

This quantity is easily obtained with standard statistical software.9 We can use (17) to test 

the hypothesis of whether change in the logit coefficient attributable to confounding, net of 

rescaling, is statistically significant via the test statistic, ZC, (where the subscript C denotes 

confounding) which, in large samples, will be normally distributed: 

),(2)()( ~..
2

~.
2

.

.~.

zyxzyxzyxzyx

zyxzyx
C

bbCovbSEbSE

bb
Z

−+

−
=  (18)| 

In other words, the statistic enables a direct test of the change in the logit coefficients that is 

attributable to confounding, net of rescaling. 

In passing, we note that, whenever z is a single variable (and not a set of 

variables), the Z-statistic for the difference in (12a) equals the Z-statistic for the effect of z 

on y as defined in (5): 

( ) ( )
( )
yz x

C yx z yx z C yz x

yz x

b
z b b z b

SE b
⋅

⋅ ⋅ ⋅
⋅

− = =ɶ   (19) 

So, in the three-variable scenario (y, x, and z) we do not need to use (18): instead we 

evaluate the Z-statistic for the effect of z on y in (5). This property is identical to the one 

presented by Clogg et al. (1995) for linear regression coefficients. We prove (19) in the 

Appendix. 

                                                 
9 Notice that . .( , )yx z yx zCov b b ɶ  is not trivial to derive conditional on the full model holding true (under H0). We 

use the method implemented in Stata command suest which returns the standard error of the difference (i.e., 
the denominator in (18)). suest is based on the derivations of a robust sandwich-type estimator, which stacks 
the equations and weighs the contributions from each equation (see White 1982). Code and sample data are 
available from the authors. 
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Researchers may also want to know whether coefficient rescaling is 

significant or whether they can reasonably ignore its influence. Because R Fσ σ>  we test 

the one-sided hypothesis: 

0

1

:

:

xy xy
xy xy z R F

R F

R F

H b b

H

β β
σ σ

σ σ
σ σ

⋅= ⇔ = ⇔ =

>

ɶ  

with the following test statistic, which will be normally distributed in large samples: 
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where subscript S denotes scaling. 

 

Comparing our method with other known solutions 

Why should researchers prefer our method to the alternatives currently available in 

statistical packages? We argue that our method is simpler and more precise. Furthermore, y-

standardization, which was suggested by Winship and Mare (1984; cf. Long 1997; Mood 

2010) as a possible solution to the comparison problems created by rescaling, is not as 

general or as tractable a method as ours. We also show why average partial effects (APEs) 

as defined in Wooldridge (2002) cannot be used for direct comparisons of coefficients 

across models without and with confounding control variables. However, combining APEs 

with the method developed in this paper provides researchers with easily interpretable 

effect decompositions. 
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y-standardization 

For making within sample comparisons of logit coefficients of x across models without and 

with control variables, z, Winship and Mare (1984) suggest y-standardization.10 The basic 

idea is to estimate the standard deviation of the predicted latent outcome, *ŷ , for different 

nested models and then, for each model, the coefficient of x is divided by the estimated 

latent standard deviation, *ˆ( )SD y . The calculated coefficients are thus y-standardized, 

because they compensate for the rescaling of the “non-standardized” coefficients. The 

standard deviation of *ŷ  is calculated using the formula developed by McKelvey and 

Zavoina (1975), here for the logit model: 

 
2

* * ˆ ˆˆ ˆ( ) ( ) ( ) ( ) ( )
3

T TSD y VAR y VAR x b VAR u VAR x b
π= = + = + . (21) 

The equation in (21) decomposes the variance of *ŷ  into a part attributable to the linear 

prediction ( ˆTx b) in the logit index and a part attributable to the fixed variance of u, which 

we previously defined as a standard logistic random variable with mean 0 and standard 

deviation / 3π . The y-standardized logit coefficient of x is thus *ˆ/ ( )sdYb b SD y= . But, 

contrary to widespread belief, such coefficients are not always comparable across models. 

To see this, we write the y-standardized counterparts to the coefficients defined in (6) as 

     
* * * *

;    
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

yx yx yx z yx zsdY sdY
yx yx z

R R R F F F

b b
b b

SD y SD y SD y SD y

β β
σ σ

⋅ ⋅
⋅= = = =

× ×
, (22) 

where ˆ( *)RSD y  and ˆ( *)FSD y  are the standard deviations of the predicted latent outcome in 

the reduced and full model, respectively. If y-standardization facilitates comparisons that 

are unaffected by the rescaling of the model, then the following condition must hold: 

                                                 
10 Another solution is fully standardized coefficients in which x is standardized as well (cf. Long 1997). 
However, since x is measured on the same scale across models and since we are interested in comparing the 
effects of x, we discuss simple y-standardization in this paper. 
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R F
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σσ σ
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In words, the change in the error standard deviations between the reduced and full model 

should be offset by the opposite change in the standard deviation of the predicted latent 

outcome. Whenever (23) holds, we can compare y-standardized coefficients across 

models.11 However, we now provide a counter-example in which we show that (23) does 

not always hold. The example is a simulation study, and it illustrates that the difficulty with 

y-standardization derives from its reliance on the variance of the predicted logit index. 

Whenever this prediction is skewed, the variance is a poor measure of dispersion, and y-

standardization consequently fails as a method for comparing coefficients across nested 

models. 

In the simulation study we draw 2,000 independent observations. Let x be a 

continuous normally distributed random variable, and let z be the exponent of a continuous 

normally distributed random variable. The sample correlation between x and z is by 

construction close to zero (in this sample -0.0065xzr = ). We generate y such that  

 y* = x + 2z + 2e, 

where e is a standard logistic random variable. We then create y, a dichotomization of y*, 

such that y* is split at the median of the distribution (ensuring 50 percent in each category). 

We estimate two logit models with y as the dependent variable. The first model includes x, 

while the second includes both x and z. Because x and z are uncorrelated, they cannot 

confound each other in the second model. Thus, the change in the coefficient of x from the 

first to the second model is a result of rescaling, not confounding.  

                                                 
11 Given that the method proposed in this paper solves the scaling problem, we are able to test whether (23) 
holds. Taking the ratio between the two logit coefficients in (22) should, if (23) holds, equal the ratio in (12b). 
In other words, researchers can use our method as a baseline comparison of the performance of y-
standardization. 
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We report logit coefficients and y-standardized logit coefficients in Table 1.12 

A researcher unaware of the rescaling of the logit coefficients of x from Model 1 to Model 

2 would erroneously conclude that z is a suppressor of the effect of x on y, because 

yx yx zb b ⋅< . yx zb ⋅  is about 30 percent larger than yxb . However, since x and z are uncorrelated, 

the inequality only comes about as result of a rescaling of the model. If y-standardization 

works satisfactorily, i.e., if the condition in (23) holds, then we would expect it that the 

change in the logit coefficients of x between Models 1 and 2 is spurious. The y-standardized 

coefficients in the table, however, tell a different story. Here the y-standardized coefficient 

of x in Model 1 is larger than the corresponding coefficient in Model 2, thereby “over-

offsetting” the rescaling: 
sdY
yxb

 is around 15 percent larger than 
sdY
yx zb ⋅ . 

In this case, y-standardization would lead to the conclusion of a reduction in 

the effect of x once we control for z. This clearly contradicts a naïve interpretation of the 

logit coefficients, which shows an increase of the effect of x. But both are wrong, because 

the true change is nil.  We have thus shown that y-standardization is not a foolproof 

method: it relies on the predicted logit index, and it may lead to incorrect conclusions. 

 

-- TABLE 1 HERE -- 

 

Marginal effects and average partial effects 

Sociologists are increasingly becoming aware of the scale identification issue in logit and 

probit models (see, e.g., Mood 2010). Economists, who have long recognized the problem, 

are usually not interested in logit or probit coefficients, but prefer marginal effects (see 

Cramer 2003; Wooldridge 2002) or average partial effects, APEs (Wooldridge 2002: 22-4). 

                                                 
12 Calculated with Spost for Stata (Long and Freese 2005). 
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Effects measured on the probability scale are intuitive, both for researchers and policy-

makers. Moreover, even though predicted probabilities are nonlinear and depend on other 

variables in the model, they are allegedly “scale free”, thereby escaping the scale 

identification issue. We agree that reporting marginal effects and predicted probabilities is a 

step forward in making results produced by logit or probit models more interpretable. 

Nevertheless, both marginal and average partial effect measures suffer from some 

deficiencies that render them unsuitable for comparing coefficients across nested models. 

Casting APEs in our framework, however, solves the problem. 

 

Defining marginal effects and average partial effects 

In logit and probit models, the marginal effect, ME, of x is the derivative of the predicted 

probability with respect to x, given by (when x is continuous13 and differentiable): 

 

 
ˆ ˆ ˆ(1 )

ˆ ˆ ˆ ˆ(1 ) (1 )
dp p p

p p b p p
dx

β β
σ σ

−= − = − = , (24) 

where ˆ Pr( 1| )p y x= =  is the predicted probability given x and b
β
σ

=  is the logit 

coefficient of x. The ME of x is evaluated at some fixed values of the other explanatory 

variables in the model, typically their means. But this implies that whenever we include 

control variables in a model we change the set of other variables at whose mean the ME is 

evaluated, so introducing indeterminacy into cross-model comparisons. We therefore ignore 

MEs in the following discussions, and rather focus on the more general APE. 

                                                 
13 Whenever x is discrete, the ME is the difference(s) in expected probabilities for each discrete category. In 
this paper, we refer to the continuous case. The discrete case follows directly from these derivations. 
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The APE of x is the derivative of the predicted probability with respect to x 

evaluated over the whole population. Let x be continuous and differentiable; then we write 

the APE of x as: 

 β
σ∑ ∑

= =

−
=

N

i

N

i

ii

i

i pp

Ndx

pd

N 1 1

)ˆ1(ˆ1ˆ1
.   (25) 

Thus the APE is a weighted average of the marginal effects over the sample. If the sample 

is drawn randomly from the population, the APE estimates the average marginal effect of x 

in the population.14 It is convenient, not least because it is a measure on the probability 

scale. However, there is a widespread belief that APEs are insensitive to the scale 

parameter. For example, Mood (2010) claims that APEs are suitable for comparisons across 

same sample nested models. But, as we show in the following section, this is not true, 

because APEs change as a function of the scale parameter. 

 

Offsetting rescaling 

The APE, as defined in (25), is sensitive to two quantities: the variance of the binary 

dependent variable conditional on the independent variables,̂ ˆ(1 )p p− , which is a function 

of the predicted probability, ̂p , and the scale parameter,σ , which is defined as the 

standard deviation of the underlying latent outcome conditional on the independent 

variables. Controlling for confounding variables will change both these quantities but in 

offsetting directions, as is evident from (25). However, their ratio will not generally be 

constant across different models. This means that the ratio  

 

                                                 
14 For discrete x’s, see Bartus (2005). 
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The ratio F

R

σ
σ  varies between 1 (when z is uncorrelated with y) and 0 (when x has no 

direct effect), while the ratio  
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is bounded between ∞ and 0 (for the same configurations of the relations between x, z, and 

y). 

Certainly there could be cases in which (27) would hold––that is, where the 

change in the ratio of residual standard deviations across two models exactly equals the 

change in the variance of the predicted probabilities––but there is no reason to think it will 

always hold. Furthermore, although we can observe the ratio of the variances of the 

predicted probabilities, we cannot observe F

R

σ
σ , and so the rescaling of the APE is 

unknown.  
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Applying our method to APEs 

Because APEs are sensitive to rescaling, we cannot directly compare the uncontrolled APE 

of x with the controlled counterpart (controlling for z) to obtain an estimate of the change in 

the effect of x on the underlying latent variable when we introduce confounders. However, 

we can apply the method developed in this paper to APEs, so solving the problem 

encountered in (26) and (27). Calculating the APE for the logit model involving zɶ , we 

obtain the following 

1

1

ˆ ˆ(1 )1
( | )

ˆ ˆ(1 )1( | )

N
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yx z
yx zi F

N
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=
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∑

∑ ɶ ɶɶ
, (29) 

Which follows because of (9) and (10) and because ˆ ˆyx z yx zp p⋅ ⋅= ɶ . While (29) casts the 

change in APEs in ratios as in (5b), we can easily derive the change in differences between 

APEs: 

( )
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( | ) ( | )

N
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yx yx z
i F

p p
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σ
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⋅
=

−
− = −∑ɶ .  (30) 

Note that (38) is not equal to the difference we would normally calculate, 

namely )|()( zxAPExAPE − . 

To summarize, APEs cannot generally be used for decomposing effects as in 

linear models because one cannot compare the uncontrolled APE with its controlled 

counterpart. However, applying the method developed in this paper to APEs produces the 

same result as applying the method to logit coefficients (i.e., captures “pure” confounding, 

net of any rescaling). For example, the ratio in (29) equals the ratio in (12b). The reason for 

this is that our method holds constant both the rescaling of the logit coefficients and the 

rescaling of APEs. Applying our method to APEs yields a measure of the extent to which 
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the effect of x on y is mediated or confounded by z on the probability scale, which may be a 

more interpretable effect measure than logit coefficients. 

 

Examples 

To illustrate the method of decomposing the change in logit coefficients into confounding 

and rescaling, we now turn to two examples. The first is a simulation study that illustrates 

how naïve comparisons of probit coefficients may fail. The second example is based on 

data from the National Education Longitudinal Study of 1988 (NELS88).15 We decompose 

the effect of parental income on the probability of graduating from high school, and we 

expect that the effect of parental income will decline when student achievements and 

parental educational attainments are controlled. We also report the results in APEs. 

 

Simulation study: Failing to detect change in probit coefficients across models 

We draw N = 2,000 independent observations. Let x be a continuous normally distributed 

random variable, and let e and v be two Normally distributed random error terms. We 

construct a confounder, z, such that 

   6.5z x v= + , 

which gives a 0.135 correlation between x and z. We construct the underlying outcome, y*, 

such that 

 * 2   2   8y x z e= + + . 

The observed binary dependent variable y is a dichotomization of y* around the median of 

the distribution (ensuring 50 percent in each category of y). We report the estimates from 

                                                 
15 We use approximately 8,000 8th grade students in 1988 who were re-interviewed in 1990, 1992, 1994, and 
2000. We have relevant background information and information on the educational careers of the students. 
For a full description of the variables used in this example, see Curtin et al (2002). We do not comment 
further on attrition, because we present the example as an illustration of how rescaling operates. 
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three probit16 models with y as dependent variable in Table 2. The first model includes x, 

the second model includes both x and z, and the third includes x and the x-residualized z, zɶ . 

 A straightforward comparison of the coefficients of x in models 1 and 2 would 

lead to the conclusion that z does not mediate, confound, or explain the effect of x on y. 

However, because x and z are correlated and because z has an independent effect on y, we 

know that z is a true confounder. Using the method proposed here reveals this. Comparing 

the coefficients of x in models 3 and 4 shows a marked reduction: 0.475-0.254 = 0.221 or 

46.5 percent using formula (12c). Moreover, because this example involves a single z, we 

may exploit the property that the Z-value for the coefficient of z in model 2 equals the ZC-

value for the difference in the coefficients of x between models 3 and 2 (see (19)). Its value 

is 0.244/0.010 ≈  24.9, which is much larger than the critical value of 1.96. We therefore 

conclude that the effect of x is truly confounded by z and that the reduction of the effect of x 

is highly statistically significant. This example illustrates how naïve comparisons may mask 

true confounding in cases where confounding and rescaling exactly offset each other. 

Because our method decomposes the coefficient change into confounding and rescaling, we 

are able to detect whether the x-y relationship is truly confounded by z. 

 

-- TABLE 2 HERE -- 

 

Example based on NELS88 

In this example we study how the effect of parental income on high school graduation 

changes when we control for student academic ability and parental educational attainment. 

We use NELS88 and our final sample consists of 8,167 students. The dependent variable is 

                                                 
16 We use probit models, because we use logit models in the next example. However, using either probit or 
logit models returns near-identical results. 
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a dichotomy indicating whether the student completed high school (= 1) or not (= 0). The 

explanatory variable of interest is a measure of yearly family income. Although the variable 

is measured on an ordered scale with 15 categories, for simplicity we use it here as a 

continuous variable. We include three control variables: these are student academic ability 

and the educational attainment of the mother and of the father.17 We derive the ability 

measure from test scores in four different subjects using the scoring from a principal 

component analysis.18 We standardize both the family income variable and the three control 

variables to have mean zero and variance of unity. We estimate five logistic models and 

report the results in Table 3. 

In M1 we find a positive logit coefficient of 0.935 for the effect of family 

income on high school completion. Controlling for student academic ability in M2 reduces 

the effect to 0.754. A naïve comparison would thus suggest that academic ability mediates 

100*(0.935-0.754)/0.935 = 19.4 percent of the effect of family income on high school 

graduation. However, such a comparison conflates confounding and rescaling. To remedy 

this deficiency, we use the estimate of family income in M3, where we have included the 

residualized student academic ability measure. The estimate is 1.010 and is directly 

comparable with the estimate in M2. Using our method we obtain a 100*(1.010-

0.754)/1.010 = 25.3 percent reduction due to confounding, net of rescaling. Because we 

only include a single control variable (academic ability), we know that the test statistic for 

academic ability in M2 equals the test statistic for the difference in the effect of family 

income in M3 and M2. Because we have good reasons to expect that academic ability 

                                                 
17 Parental education is coded in seven, ordered discrete categories. To keep the example simple, we include 
father’s and mother’s education as continuous covariates, although a dummy-specification would have given a 
more precise picture of the relationship with the dependent variable. 
18 These tests are in reading, mathematics, science, and history. The variables are provided in the public use 
version of NELS88. The eigenvalue decomposition revealed one factor accounting for 78.1 percent of the 
total variation in the four items. 
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reduces the effect of family income on high school completion, we use a one-sided 

hypothesis and thus a critical value of 1.64. We obtain ZC = 0.672/0.042 ≈  15.84, and we 

therefore conclude that academic ability mediates the effect of family income on high 

school completion. 

 

-- TABLE 3 HERE -- 

 

In Table 3 we also report estimates from two further logistic models. M4 adds father’s and 

mother’s educational attainment and M5 includes the family income residualized 

counterparts of all three control variables. A naïve researcher would compare the effect of 

family income in M1 (0.935) and M4 (0.386), and report a reduction of 58.7 percent. 

However, using our method we would compare the effect of family income in M5 (2.188) 

and M4 (0.386). This suggests a substantially larger reduction of 82.4 percent. Using the 

formula in (18) we obtain a ZC of 18.88 and thereby conclude that the reduction is 

statistically significant. Moreover, our method also provides us with an estimate of how 

much rescaling masks the change caused by confounding. Using the decomposition 

expressed in ratios in (14a): 

  

Naïve Confounding Rescaling

0.386  2.188 0.386

 0.935 0.935  2.188

2.420 5.668 0.427.
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While confounding reduces the effect by a factor of 5.7, rescaling counteracts this reduction 

with an increase of about 0.427-1 = 2.3 times. In this case rescaling plays an important role 
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in masking the true change due to confounding. Not surprisingly, rescaling has a 

statistically significant effect: using (20) returns a ZS of 14.24, which is far larger than the 

critical value of 1.64.  

 In the final part of this example we reproduce Table 4, but we replace the 

logit estimates with APEs.19 In M1 we observe that a standard deviation increase in family 

income increases the probability of completing high school by 10.4 percent. Controlling for 

student academic ability in M2 changes the effect to 8.1 percent, a reduction of 22.7 

percent. However, using the specification in M3 returns a slightly different result, namely a 

25.4 percent reduction. Using more decimals than the ones presented in Table 4, this 

percentage reduction exactly equals the reduction calculated with the logit coefficients in 

Table 3. In light of equation (29), this finding is what we would have expected. Moreover, 

as noted in a previous section, APEs somewhat offset rescaling. The naïve comparison 

using logit coefficients returned a 19.4 percent reduction, while the naïve counterpart for 

APEs returned a 22.7 percent reduction. The naïve comparison based on APEs is thus 

closer to the true reduction (25.3 percent). 

Turning to models M4 and M5 in Table 4, naïvely comparing the effect of 

family income in M1 and M4 returns a 71.1 percent reduction, while correctly comparing 

the effect in M5 and M4 returns an 82.3 percent reduction. With sufficient decimals the 

latter reduction exactly equals the one based on the logit coefficients in Table 2. Moreover, 

comparing the family income APE in M1 and M5 clearly shows that APEs can be highly 

sensitive to rescaling. Conditional on M1 holding true, we would estimate that a standard 

deviation increase in family income would increase the probability of completing high 

school by around 10 percent. However, conditional on M4 (and thus M5) holding true (the 

                                                 
19 We use the user-written margeff command in Stata to calculate the APEs (Bartus 2005). 
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model which, in this example, we would take as the full model), the effect is around 17 

percent. Although the results point in the same direction, there is a substantial difference 

between the effect sizes.  

Similar to the decomposition of the naïve ratio of logit coefficients into 

confounding and rescaling, we can report an APE counterpart: 

Naïve Confounding APE "rescaling"

( ) ( | ) ( )

( | ) ( | ) ( | )

0.1043  0.1704 0.1043

 0.0301 0.0301  0.1704

3.465 5.661 0.612.

APE x APE x z APE x

APE x z APE x z APE x z
= ×
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= ×

= ×

ɶ

ɶ

����� ����� �����

⇕

 

From the decomposition we see that the ratio measuring confounding equals the one found 

with logit coefficients. However, the rescaling is smaller for APEs (0.612 – that is, closer to 

unity) than for logit coefficients (0.427). 

 

-- TABLE 4 HERE -- 

 

Conclusion 

Winship and Mare (1984) noted that logit coefficients are not directly comparable across 

same sample nested models, because the logit fixes the error variance at an arbitrary 

constant. While the consequences of this identification restriction for the binary logistic 

model are well-known in the econometric literature, no-one has as yet solved the problem 

that emerges when comparing logit coefficients across nested models. This has led many 

applied quantitative sociologists to believe that confounding works the same way for the 

binary logit or probit regression model as for the linear regression model. In this paper we 
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remedy the previous lack of attention to the undesirable consequences of rescaling for the 

interpretation of sequentially controlled logit coefficients by developing a method that 

allows us to identify the separate effects of rescaling and confounding. 

 Our exposition and its illustration through the simulated example and the 

analysis of NELS data lead us to five main points. First, naïve comparisons of logit 

coefficients across same sample nested models should be avoided. Such comparisons may 

mask or underestimate the true change due to confounding. Second, using our method 

resolves the problem, because it decomposes the naïve coefficient change into a part 

attributable to confounding (of interest to researchers) and into a part attributable to 

rescaling (of minor interest for researchers). Third, our method provides easily calculated 

test statistics that enable significance tests of both confounding and rescaling. Fourth, APEs 

can be highly sensitive to rescaling but, fifthly, applying our method to APEs overcomes 

this problem. 

Rescaling will always increase the apparent magnitude of the coefficient of a 

variable20 and this commonly counteracts the effect of the inclusion of confounding 

variables, which are most often expected to reduce the effect of the variable of interest.  

This creates a serious problem for applied research. Observing a relatively stable coefficient 

of interest across models which successively introduce blocks of control variables typically 

leads researchers to the conclusion that the effect is “persistent” and robust to the addition 

of control variables (see our simulation example). Furthermore, even if researchers find that 

the controlled effect is smaller than the uncontrolled effect, the difference may nevertheless 

be underestimated because of rescaling. The same goes for average partial effects, which up 

until now have been claimed to be insensitive to rescaling. In any of these cases 

                                                 
20 This happens when both y* and x, y* and z, and x and z are all positively correlated, e.g., when y* is passing 
an educational threshold, x is some parental background characteristic, and z is cognitive ability. 
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conclusions about the impact of confounding cannot be justified unless we use the method 

proposed in this paper. And, as we noted at the outset, the problem we address here is not 

confined to binary logit or probit models: it applies to all non-linear models for categorical 

or limited dependent variables (such as the complementary log-log) and it occurs in all 

applications that use logit or probit models (such as discrete time event history models) and 

their extensions (such as multilevel logit models and multinomial logits). 
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Appendix: Proof of equation (19) 

In this appendix we prove equation (19). We show that testing 0yx z yx zb b⋅ ⋅− =ɶ  amounts to 

testing 0yz xb ⋅ = , because it holds that: 

yx z yx z yz x zxb b b θ⋅ ⋅ ⋅− =ɶ ,    (A1) 

where zxθ  is a linear regression coefficient relating x to z: zxz x lθ= + , where l is a random 

error term. (A1) says that the part of the xy-relationship confounded by z may be expressed 

as the product of the logit coefficient relating z to y net of x, and the linear regression 

coefficient relating x to z. Whenever 0yz xb ⋅ = , (A1) equals zero and thus, since yz xb ⋅  is 

measured on the same scale as the difference yx z yx zb b⋅ ⋅−ɶ , testing 0yz xb ⋅ =  amounts to 

testing whether the difference yx z yx zb b⋅ ⋅−ɶ  is zero. 

 However, the equality in (A1) must hold in order for the test to be effective. 

We therefore prove that the equality in (A1) holds. Exploiting the derivations for linear 

models by Clogg, Petkova, and Haritou (1995) and the method developed in this paper, we 

have that  
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where ijr  denotes the correlation between variables i and j, and sk denotes the standard 

deviation of variable k. From simple definitions we find that: 
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We have thus proved the equality in (A1) and shown that, in the three-variable case, (19) is 

a test of the significance of confounding net of rescaling. In Karlson, Holm, and Breen 

(2010) we exploit the property in (A1) to develop a new method for decomposing total 

effects into direct and indirect effects for logit and probit models. 
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Table 1. Normal and y-standardized logit coefficients from the two models 
 Model 1  Model 2  
 

yxb  sdY
yxb  yx zb ⋅  sdY

yx zb ⋅  

x  0.360 0.195 0.466 0.166 
z  - - 0.947 0.336 

*ˆ( )SD y  1.849  2.815  

Pseudo-R2 0.022  0.188  
 
 
Table 2. The effect of x on y from simulated data. Probit coefficients. 
 Model 1  Model 2 

(z) 
 Model 3 

( zɶ ) 
 

 Coef. SE Coef. SE Coef. SE 
x  0.252 0.029 0.254 0.039 0.475 0.041 
zor zɶ  - - 0.244 0.010 0.244 0.010 
Intercept 0.002 0.028 0.020 0.037 0.001 0.037 
Pseudo-R2 0.028  0.478  0.478  

 
 
Table 3. Controlling the effect of family income on high school graduation. Logit-
coefficients (robust standard errors in parenthesis) 

 M1 M2 M3 M4 M5 

Controls None z zɶ  z zɶ  

 Family income 
0.935 

(0.032) 
0.754 

(0.034) 
1.010 

(0.033) 
0.386 

(0.042) 
2.188 

(0.093) 

 Academic ability 
 

0.672 
(0.042) 

0.672 
(0.042) 

0.298 
(0.050) 

0.298 
(0.050) 

 Father’s education 
   

0.856 
(0.092) 

0.856 
(0.092) 

 Mother’s education 
   

2.936 
(0.217) 

2.936 
(0.217) 

Intercept 
1.981 

(0.035) 
2.132 

(0.040) 
2.132 

(0.040) 
4.298 

(0.188) 
4.298 

(0.188) 
Pseudo-R2 0.138 0.180 0.180 0.421 0.421 

LogL -3021.5 -2872.8 -2872.8 -2028.6 -2028.6 

N = 8,167 
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Table 4. APE counterparts to logit coefficients in Table 3 (robust standard errors in 
parenthesis) 

 M1 M2 M3 M4 M5 

Controls None z zɶ  z zɶ  

 Family income 
0.1043 

(0.0034) 
0.0806 

(0.0035) 
0.1080 

(0.0033) 
0.0301 

(0.0034) 
0.1704 

(0.0031) 

 Academic ability 
 

0.0718 
(0.0044) 

0.0718 
(0.0044) 

0.0232 
(0.0040) 

0.0232 
(0.0040) 

 Father’s education 
   

0.0666 
(0.0071) 

0.0666 
(0.0071) 

 Mother’s education 
   

0.2286 
(0.0114) 

0.2286 
(0.0114) 

N = 8,167
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